Preference Learning and Aggregation from Natural Language

Farhad Mohsin, Lei Luo, Wufei Ma, Zhibing Zhao, Ao Liu, Rohit Vaish, Lirong Xia

Motivation

• Eliciting preferences

OPRA	다iPolls	閲 Multi-Polls	」回Classes	L Groups	Sessions	🛗 Events 👻	
- Q						Current Winners	
Two	Columns	One Column	Sliders	Stars Yes	/No		
Your preferences: Submit							
#	1	Α	E]			
#	2	в	D				
#	13	С					

- How can we learn agent preferences from natural language to make a group decision?
 - E.g. Forums, message boards, chat rooms

Proposed Framework

- New dataset
 - College Confidential
- Entity-wise Sentiments **G** IBM.
 - not good enough alone
- Stance Detection
 - [Mohammad et al. TOIT-2017]

- Plackett-Luce model with features
 - Opinion+agent+alternative features
- Other ML
 - sentiment+SVM, LogReg, NB
 - ngram+SVM
 - pre-trained word vectors+NN
- Similar accuracy

Decision Preference Aggregation

 66.67% accuracy for Plurality voting (College confidential dataset)

Group

- 2 or 3 alternatives
- 10-40 agents

Preference Aggregation

Voting with m alternatives, n agents, each represented by a distribution

• Probabilistic votes [Hazon et al. AIJ-12]

🙂 natural

 Fractional votes [Prasad et al. ICML-15, Noothigattu et al. AAAI-18, Zhibing et al. UAI-18]
easy to compute

Theorem. For all anonymous rules and any profile of distributions

 $Pr(Prob winner = Fractional winner) \\ \ge 1 - m! \exp(-\Omega(Margin of Victory))$

Proposition. For Plackett-Luce preferences

Voting Rule	Runtime		
k-Approval	O(k m ^k n)		
Copeland	O(m ² n)		
Maximin	O(m ² n)		
STV	O(m ² n)		